Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the analysis of a microlensing event KMT-2022-BLG-0086 of which the overall light curve is not described by a binary-lens single-source (2L1S) model, which suggests the existence of an extra lens or an extra source. We found that the event is best explained by the binary-lens binary-source (2L2S) model, but the 2L2S model is only favored over the triple-lens single-source (3L1S) model by Δχ2 ≃ 9. Although the event has noticeable anomalies around the peak of the light curve, they are not enough covered to constrain the angular Einstein radiusθE, thus we only measure the minimum angular Einstein radius . From the Bayesian analysis, it is found that that the binary lens system is a binary star with masses of at a distance of kpc, while the triple lens system is a brown dwarf or a massive giant planet in a low-mass binary-star system with masses of , at a distance of kpc, indicating a disk lens system. The 2L2S model yields the relative lens-source proper motion ofμrel ≥ 4.6 mas yr−1that is consistent with the Bayesian result, whereas the 3L1S model yieldsμrel ≥ 18.9 mas yr−1, which is more than three times larger than that of a typical disk object of ∼6 mas yr−1and thus is not consistent with the Bayesian result. This suggests that the event is likely caused by the binary-lens binary-source model.more » « lessFree, publicly-accessible full text available July 8, 2026
-
Aims. The light curves of the microlensing events MOA-2022-BLG-091 and KMT-2024-BLG-1209 exhibit anomalies with very similar features. These anomalies appear near the peaks of the light curves, where the magnifications are moderately high, and are distinguished by weak caustic-crossing features with minimal distortion while the source remains inside the caustic. To achieve a deeper understanding of these anomalies, we conducted a comprehensive analysis of the lensing events. Methods. We carried out binary-lens modeling with a thorough exploration of the parameter space. This analysis revealed that the anomalies in both events are of planetary origin, although their exact interpretation is complicated by different types of degeneracy. In the case of MOA-2022-BLG-091, the main difficulty in the interpretation of the anomaly arises from a newly identified degeneracy related to the uncertain angle at which the source trajectory intersects the planet–host axis. For KMT-2024-BLG-1209, the interpretation is affected by the previously known inner-outer degeneracy, which leads to ambiguity between solutions in which the source passes through either the inner or outer caustic region relative to the planet host. Results. Bayesian analysis indicates that the planets in both lens systems are giant planets with masses about two to four times that of Jupiter, orbiting early K-type main-sequence stars. Both systems are likely located in the Galactic disk at a distance of around 4 kiloparsecs. The degeneracy in KMT-2024-BLG-1209 is challenging to resolve because it stems from intrinsic similarities in the caustic structures of the degenerate solutions. In contrast, the degeneracy in MOA-2022-BLG-091, which occurs by chance rather than from inherent characteristics, is expected to be resolved by the future space based Roman RGES microlensing survey.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Aims. We examined the anomalies in the light curves of the lensing events MOA-2022-BLG-033, KMT-2023-BLG-0119, and KMT- 2023-BLG-1896. These anomalies share similar traits: they occur near the peak of moderately to highly magnified events and display a distinct short-term dip feature. Methods. We conducted detailed modeling of the light curves to uncover the nature of the anomalies. This modeling revealed that all signals originated from planetary companions to the primary lens. The planet-to-host mass ratios are very low:q~ 7.5 × 10−5for MOA-2022-BLG-033,q~ 3.6 × 10−4for KMT-2023-BLG-0119, andq~ 6.9 × 10−5for KMT-2023-BLG-1896. The anomalies occurred as the source passed through the negative deviation region behind the central caustic along the planet-host axis. The solutions are subject to a common inner-outer degeneracy, which results in varying estimations of the projected planet-host separation. For KMT-2023-BLG-1896, although the planetary scenario provides the best explanation for the anomaly, the binary companion scenario is possible. Results. We estimated the physical parameters of the planetary systems through Bayesian analyses based on the lensing observables. While the event timescale was measured for all events, the angular Einstein radius was not measured for any. Additionally, the microlens parallax was measured for MOA-2022-BLG-033. The analysis identifies MOA-2022-BLG-033L as a planetary system with an ice giant with a mass of approximately 12 times that of Earth orbiting an early M dwarf star. The companion of KMT-2023-BLG-1896L is also an ice giant, with a mass of around 16 Earth masses, orbiting a mid-K-type main-sequence star. The companion of KMT-2023-BLG- 0119L, which has a mass around that of Saturn, orbits a mid-K-type dwarf star. The lens for MOA-2022-BLG-033 is highly likely to be located in the disk, whereas for the other events the probabilities of the lens being in the disk or the bulge are roughly equal.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract In this work, we continue to apply the updated KMTNet tender-love care photometric pipeline to historical microlensing events. We apply the pipeline to a subsample of events from the KMTNet database, which we refer to as the giant source sample. Leveraging the improved photometric data, we conduct a systematic search for anomalies within this sample. The search successfully uncovers four new planet-like anomalies and recovers two previously known planetary signals. After detailed analysis, two of the newly discovered anomalies are confirmed as clear planets: KMT-2019-BLG-0578 and KMT-2021-BLG-0736. Their planet-to-host mass ratios areq ∼ 4 × 10−3andq ∼ 1 × 10−4, respectively. Another event, OGLE-2018-BLG-0421 (KMT-2018-BLG-0831), remains ambiguous. Both a stellar companion and a giant planet in the lens system could potentially explain the observed anomaly. The anomaly signal of the last event, MOA-2022-BLG-038 (KMT-2022-BLG-2342), is attributed to an extra source star. Within this sample, our procedure doubles the number of confirmed planets, demonstrating a significant enhancement in the survey sensitivity.more » « lessFree, publicly-accessible full text available May 7, 2026
-
We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.more » « less
-
Aims.The United Kingdom Infrared Telescope (UKIRT) microlensing survey was conducted over four years, from 2016 to 2019, with the goal of serving as a precursor to future near-infrared microlensing surveys. Focusing on stars in the Galactic center and utilizing near-infrared passbands, the survey identified approximately one thousand microlensing events, 27 of which displayed anomalies in their light curves. This paper presents an analysis of these anomalous events, aiming to uncover the underlying causes of the observed anomalies. Methods.The events were analyzed under various configurations, considering the potential binarity of both the lens and the source. For 11 events that were additionally observed by other optical microlensing surveys, including those conducted by the OGLE, KMTNet, and MOA collaborations, we incorporated their data into our analysis. Results.Among the reported anomalous events, we revealed the nature of 24 events except for three events, in which one was likely to be a transient variable, and two were difficult to accurately characterize their nature due to the limitations of the available data. We confirmed the binary lens nature of the anomalies in 22 events. Among these, we verified the earlier discovery that the companion in the binary lens system UKIRT11L is a planetary object. Accurately describing the anomaly in UKIRT21 required a model that accounted for the binarity of both the lens and the source. For two events UKIRT01 and UKIRT17, the anomalies could be interpreted using either a binary-source or a binary-lens model. For the UKIRT05, it was found that accounting for higher-order effects induced by the orbit al motions of both Earth and the binary lens was crucial. With the measured microlensing parallax togeter with the angular Einstein radius, the component masses of the UKIRT05 binary lens were determined to beM1= (1.05 ± 0.20)M⊙,M2= (0.36 ± 0.07)M⊙, and the distance to the lens was found to beDL= (3.11 ± 0.40) kpc.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract In the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of ∼950 microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a subsample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes, and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper-motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of , , and , respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the timescale (tE) versus parallax (πE) diagram to derive constraints on the population of lenses in general and massive remnants in particular.more » « less
-
Aims.We analyze the anomalies appearing in the light curves of the three microlensing events MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735. The anomalies exhibit common short-term dip features that appear near the peak. Methods.From the detailed analyses of the light curves, we find that the anomalies were produced by planets accompanied by the lenses of the events. For all three events, the estimated mass ratios between the planet and host are on the order of 10−4:q ~8 × 10−4for MOA-2022-BLG-563L,q~ 2.5 × 10−4for KMT-2023-BLG-0469L, andq~ 1.9 × 10−4for KMT-2023-BLG-0735L. The interpretations of the anomalies are subject to a common inner-outer degeneracy, which causes ambiguity when estimating the projected planet-host separation. Results.We estimated the planet mass,Mp, host mass,Mh, and distance,DL, to the planetary system by conducting Bayesian analyses using the observables of the events. The estimated physical parameters of the planetary systems are (Mh/M⊙,Mp/MJ,DL/kpc) = (0.48−0.30+0.36, 0.40−0.25+0.31, 6.53−1.57+1.12) for MOA-2022-BLG-563L, (0.47−0.26+0.35, 0.124−0.067+0.092, 7.07−1.19+1.03) for KMT-2023-BLG-0469L, and (0.62−0.35+0.34, 0.125−0.070+0.068, 6.26−1.67+1.27) for KMT-2023-BLG-0735L. According to the estimated parameters, all planets are cold planets with projected separations that are greater than the snow lines of the planetary systems, they have masses that lie between the masses of Uranus and Jupiter of the Solar System, and the hosts of the planets are main-sequence stars that are less massive than the Sun. In all cases, the planetary systems are more likely to be in the bulge with probabilitiesPbulge= 64%, 73%, and 56% for MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735, respectively.more » « less
-
Aims.We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods.Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results.Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency.more » « less
-
Exoplanets classified as super-Earths are commonly observed on short-period orbits, close to their host stars, but their abundance on wider orbits is poorly constrained. Gravitational microlensing is sensitive to exoplanets on wide orbits. We observed the microlensing event OGLE-2016-BLG-0007, which indicates an exoplanet with a planet-to-star mass ratio roughly double the Earth-Sun mass ratio, on an orbit longer than Saturn’s. We combined this event with a larger sample from a microlensing survey to determine the distribution of mass ratios for planets on wide orbits. We infer that there are ~0.35 super-Earth planets per star on Jupiter-like orbits. The observations are most consistent with a bimodal distribution, with separate peaks for super-Earths and gas giants. We suggest that this reflects differences in their formation processes.more » « lessFree, publicly-accessible full text available April 25, 2026
An official website of the United States government
